

SEMICONDUCTOR

TIS75

N-Channel General Purpose Amplifier

- This device is designed for low level analog switching, sample and hold circuits and chopper stabilized amplifiers.
- Sourced from process 54.

1. Gate 2. Source 3. Drain

Absolute Maximum Ratings * T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	30	V
V _{GS}	Gate-Source Voltage	-30	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 ~ +150	°C

NOTES:

These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	cteristics					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	I _G = 1.0μA, V _{DS} = 0	-30			V
I _{GSS}	Gate Reverse Current	$V_{GS} = 15V, V_{DS} = 0$ $V_{GS} = 15V, V_{DS} = 0, T_a = 100^{\circ}C$			-2.0 -5.0	nA μA
I _D (off)	Drain Cutoff Leakage Current	$V_{DS} = 15V, V_{GS} = -10V$ $V_{DS} = 15V, V_{GS} = -10V,$ $T_a = 100^{\circ}C$			-2.0 -5.0	nA μA
V _{GS} (off)	Gate-Source Cutoff Voltage	V _{DS} = 20V, I _D = 4.0nA	-0.8		-4.0	V
On Charac	teristics *					
I _{DSS}	Zero-Gate Voltage Drain Current *	V _{DS} = 15V, V _{GS} = 0	8		80	mA
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \le 0.1 V, V_{GS} = 0$			60	Ω
Small Sigr	al Characteristics		•			-
C _{iss}	Input Capacitance	V _{DS} = 0, V _{GS} = -10V, f = 1.0MHz			18	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 0, V _{GS} = -10V, f = 1.0MHz			8.0	pF
Switching	Characteristics					
t _r	Rise Time	$V_{GS}(off) = -4.0V, V_{GS}(on) = 0,$			10	ns
t _{on}	Turn-On Time	I _D = 5.0mA, V _{DS} = 10V			10	ns
t _{off}	Turn-Off Time				100	ns

* Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 3.0%

Symbol	Characteristics T _a =25°C unless otherwise noted Parameter	Max.	Units
)	Total Device Dissipation Derate above 25 [°] C	350 2.8	mW mW/ ^o C
	Thermal Resistance, Junction to Case	125	°C/W
κ _{θJC} κ _{θJA}	Thermal Resistance, Junction to Case	357	°C/W
		I	L

©2004 Fairchild Semiconductor Corporation