SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Motorola MC1558/MC1458 and Signetics S5558/N5558

description/ordering information

The MC1458 and MC1558 are dual general-purpose operational amplifiers, with each half electrically similar to the μ A741, except that offset null capability is not provided.

The high-common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

NC - No internal connection

ORDERING INFORMATION

T _A	V _{IO} max AT 25°C	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		PDIP (P)	Tube	MC1458P	MC1458P	
	6 mV		Tube	MC1458D	NO1 450	
0°C to 70°C		SOIC (D)	Tape and reel	MC1458DR	MC1458	
		SOP (PS)	Tape and reel	MC1458PSR	M1458	
		CDIP (JG)	Tube	MC1558JG	MC1558JG	
–55°C to 125°C	5 mV	CDIP (JGB)	Tube	MC1558JGB	MC1558JGB	
		LCCC (FK)	Tube	MC1558FK	MC1558FK	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

 $Copyright © 2002, \ Texas \ Instruments \ Incorporated \\ On products \ compliant to \ MIL-PRF-3853, all \ parameters \ are tested \\ unless \ other \ yroducts, \ products, \$

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

symbol (each amplifier)

schematic (each amplifier)

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC+} (see Note 1):	MC1458		
Supply voltage, V _{CC-} (see Note 1):	MC1458		18 V
	MC1558		_ 22 V
Differential input voltage, VID (see No	ote 2)		±30 V
Input voltage, VI (either input, see No			
Duration of output short circuit (see I			
Operating virtual junction temperatur	-		
Package thermal impedance, θ_{JA} (see	e Notes 5 and 6): D	package	97°C/W
	P	package	
		S package	
Package thermal impedance, θ_{JC} (see	ee Notes 7 and 8): Fl	K package	5.61°C/W
	JC	G package	14.5°C/W
Case temperature for 60 seconds: F	K package		260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 sec	conds: JG package	300°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 sec	conds: D, P, or PS package .	260°C
Storage temperature range, T _{stg}			–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-} .
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output can be shorted to ground or either power supply. For the MC1558 only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 70°C free-air temperature.
 - 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 6. The package thermal impedance is calculated in accordance with JESD 51-7.
 - 7. Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 8. The package thermal impedance is calculated in accordance with MIL-STD-883.

recommended operating conditions

			MIN	MAX	UNIT
$V_{CC\pm}$	Supply voltage		±5	±15	V
т.		MC1458	0	70	°C
IA	Operating free-air temperature range	MC1558	-55	125	

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

electrical characteristics at specified free-air temperature, $V_{CC\pm}$ = ±15 V

			Ν	IC1458		Ν	IC1558					
	PARAMETER	TES		MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
				25°C		1	6		1	5		
V _{IO}	Input offset voltage	V _O = 0		Full range			7.5			6	mV	
				25°C		20	200		20	200		
I _{IO}	Input offset current	V _O = 0		Full range			300			500	nA	
				25°C		80	500		80	500		
I _{IB}	Input bias current	V _O = 0		Full range			800			1500	nA	
	Common-mode input			25°C	±12	±13		±12	±13			
V _{ICR}	voltage range			Full range	±12			±12			V	
		$R_L = 10 \ k\Omega$		25°C	±12	±14		±12	±14			
	Maximum peak output	$R_L \ge 10 \ k\Omega$		Full range	±12			±11				
V _{OM}	voltage swing	$R_L = 2 k\Omega$		25°C	±10	±13		±10	±13		V	
		$R_L \ge 2 k\Omega$		Full range	±10			±10				
	Large-signal differential			25°C	20	200		50	200		V/mV	
A _{VD}	voltage amplification	$R_L \ge 2 k\Omega$,	$V_{O} = \pm 10 V$	Full range	15			25				
B _{OM}	Maximum-output-swing bandwidth (closed loop)	$\begin{array}{l} R_{L} = 2 \; k \Omega, \\ A_{VD} \; = 1, \end{array}$	$V_O \ge \pm 10 V$, THD $\ge 5\%$	25°C		14			14		kHz	
B ₁	Unity-gain bandwidth			25°C		1			1		MHz	
фm	Phase margin	A _{VD} = 1		25°C		65			65		deg	
	Gain margin			25°C		11			11		dB	
r _i	Input resistance			25°C	0.3	2		0.3*	2		MΩ	
r _o	Output resistance	V _O = 0,	See Note 9	25°C		75			75		Ω	
Ci	Input capacitance			25°C		1.4			1.4		pF	
z _{ic}	Common-mode input impedance	f = 20 Hz		25°C		200			200		MΩ	
01100	Common-mode	V _{IC} = V _{ICR} mi	in,	25°C	70	90		70	90		5	
CMRR	rejection ratio	$V_0 = 0$		Full range	70			70			dB	
	Supply-voltage	V _{CC} = ±9 V to ±15 V,		25°C		30	150		30	150		
k _{SVS}	sensitivity (ΔV _{IO} /ΔV _{CC})	$V_{\rm O} = 0$, ⊥10 v ,	Full range			150			150	μV/V	
Vn	Equivalent input noise voltage (closed loop)	A _{VD} = 100, f = 1 kHz,	R _S = 0, BW = 1 Hz	25°C		45			45		nV/√H	
I _{OS}	Short-circuit output current			25°C		±25	±40		±25	±40	mA	
	Supply current		11	25°C		3.4	5.6		3.4	5	mA	
Icc	(both amplifiers)	V _O = 0, No	load	Full range			6.6			6.6		
D	Total power dissipation		11	25°C		100	170		100	150		
P _D	(both amplifiers)	V _O = 0, No	load	Full range			200			200	mW	
V ₀₁ /V ₀₂	Crosstalk attenuation			25°C		120			120		dB	

*On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All characteristics are specified under open-loop operating conditions with zero common-mode input voltage, unless otherwise specified. Full range for MC1458 is 0°C to 70°C and for MC1558 is –55°C to 125°C.

NOTE 9: This typical value applies only at frequencies above a few hundred hertz because of the effect of drift and thermal feedback.

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

PARAMETER		TEAT OO	Γ	MC1458		ľ						
		TEST CON	MIN	TYP	MAX	MIN	TYP	MAX	UNIT			
	Rise time	V _I = 20 mV,	$R_L = 2 k\Omega$,		0.3			0.3		μs		
τ _r	Overshoot factor	V _I = 20 mV,	$R_L = 2 k\Omega$		5			5		%		
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$		0.5			0.5		V/µs		

operating characteristics, $V_{CC\pm} = \pm 15$ V, $C_L = 100$ pF, $T_A = 25^{\circ}C$ (see Figure 1)

PARAMETER MEASUREMENT INFORMATION

Figure 1. Rise-Time, Overshoot, and Slew-Rate Waveform and Test Circuit

PACKAGE OPTION ADDENDUM

2-Dec-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Sample
5962-9760301Q2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9760301Q2A MC1558FKB	Samples
5962-9760301QPA	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	9760301QPA MC1558	Samples
MC1458DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	MC1458	Samples
MC1458DRG4	ACTIVE	SOIC	D	8	2500	TBD	Call TI	Call TI	0 to 70		Samples
MC1458P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	MC1458P	Samples
MC1458PE4	ACTIVE	PDIP	Р	8	50	TBD	Call TI	Call TI	0 to 70		Samples
MC1458PSR	LIFEBUY	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	M1458	
MC1558FKB	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9760301Q2A MC1558FKB	Sample
MC1558JG	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	MC1558JG	Sample
MC1558JGB	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	9760301QPA MC1558	Sample

 $^{\left(1\right) }$ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

Addendum-Page 1