

Technical documentation

Support & training

LM139, LM239, LM339, LM339B, LM139A, LM239A LM339A, LM2901B, LM2901, LM2901AV, LM2901V SLCS006V – OCTOBER 1979 – REVISED DECEMBER 2022

LM339B, LM2901B, LM339, LM239, LM139, LM2901 Quad Differential Comparators

1 Features

Texas

INSTRUMENTS

- NEW LM339B and LM2901B
- Improved specifications of B-version
 - Maximum rating: up to 38 V
 - ESD rating (HBM): 2k V
 - Low input offset: 0.37 mV
 - Low input bias current: 3.5 nA
 - Low supply-current: 200 µA per comparator
 - Faster response time of 1 µsec
- Extended temperature range for LM339B
- B-version is drop-in replacement for LM239, LM339 and LM2901, A and V versions
- Common-mode input voltage range includes ground
- Differential input voltage range equal to maximumrated supply voltage: ±38 V
- · Low output saturation voltage
- Output compatible with TTL, MOS, and CMOS
- For single version, see the TL331B
- For dual version, see the LM393B or LM2903B

2 Applications

- Vacuum robot
- · Single phase UPS
- Server PSU
- Cordless power tool
- Wireless infrastructure
- Applicances
- Building automation
- Factory automation & control
- Motor drives
- Infotainment & cluster

3 Description

The LM339B and LM2901B devices are the next generation versions of the industry-standard LM339 and LM2901 comparator family. These next generation B-version comparators feature lower offset voltage, higher supply voltage capability, lower supply current, lower input bias current, lower propagation delay, and improved 2 kV ESD performance and input ruggedness through dedicated ESD clamps. The LM339B and LM2901B can drop-in replace the LM239, LM339 and LM2901, for both "A" and "V" grades.

All devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages.

Device Information								
PART NUMBER	PACKAGE (1)	BODY SIZE (NOM)						
LM139x	CDIP (14)	21.30 mm × 7.60 mm						
LM139x, LM239x, LM339x, LM2901x, LM339B, LM2901B	SOIC (14)	8.70 mm × 3.90 mm						
LM239, LM339x, LM2901	PDIP (14)	19.30 mm × 6.40 mm						
LM239, LM2901, LM339B, LM2901B	TSSOP (14)	5.00 mm × 4.40 mm						
LM339x, LM2901, LM339B, LM2901B	SO (14)	10.20 mm × 5.30 mm						
LM339x, LM339B	SSOP (14)	6.50 mm × 5.30 mm						
LM2901B	SOT-23 (14)	4.20 mm x 2.00 mm						
	WQFN (16)	3.00 mm x 3.00 mm						

Device Information

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Family Comparison Table

Specification	LM339B	LM2901B	LM339 LM339A	LM2901 LM2901A	LM2901V LM2901AV	LM139 LM139A	LM239 LM239A	Units
Supply Voltage	2 to 36	2 to 36	2 to 30	2 to 30	2 to 32	2 to 30	2 to 30	V
Total Supply Current (5V to 36V max)	0.8 to 1	0.8 to 1	1 to 2.5	1 to 2.5	1 to 2.5	1 to 2.5	1 to 2.5	mA
Temperature Range	-40 to 85	-40 to 125	0 to 70	-40 to 125	-40 to 125	-55 to 125	-25 to 85	°C
ESD (HBM)	2000	2000	1000	1000	1000	1000	1000	V
Offset Voltage (Max over temp)	± 5.5	± 5.5	± 9 ± 4	± 15 ± 4	± 15 ± 4	± 9 ± 4	± 9 ± 4	mV
Input Bias Current (typ / max)	3.5 / 25	3.5 / 25	25 / 250	25 / 250	25 / 250	25 / 100	25 / 250	nA
Response Time (typ)	1	1	1.3	1.3	1.3	1.3	1.3	µsec

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History
5 Other Versions4
6 Pin Configuration and Functions
7 Specifications
7.1 Absolute Maximum Ratings for LM339B and
LM2901B6
7.2 Absolute Maximum Ratings for Non-B Versions6
7.3 ESD Ratings for LM339B and LM2901B7
7.4 ESD Ratings, Non-B Versions7
7.5 Recommended Operating Conditions for
LM339B and LM2901B7
7.6 Recommended Operating Conditions, Non-B
Versions7
7.7 Thermal Information for LM339B and LM2901B8
7.8 Thermal Information for Non-B Versions8
7.9 Electrical Characteristics for LM339B9
7.10 Electrical Characteristics for LM2901B9
7.11 Electrical Characteristics for LM139 and LM139A 10
7.12 Electrical Characteristics for LMx39 and LMx39A11
7.13 Electrical Characteristics for LM2901,
LM2901V and LM2901AV 12
7.14 Switching Characteristics for LM139 and
LM139A
7.15 Switching Characteristics for LM339B and
LM2901B13

7.16 Switching Characteristics for LMx39 and LMx39A	13
7.17 Switching Characteristics for LM2901	
7.18 Typical Characteristics for LM339B and	10
LM2901B Only	14
7.19 Typical Characteristics, Non-B Versions	
8 Detailed Description.	
8.1 Overview	
8.2 Functional Block Diagram	
8.3 Feature Description	
8.4 Device Functional Modes	22
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application	
10 Power Supply Recommendations	
11 Layout	
11.1 Layout Guidelines	
11.2 Layout Example	26
12 Device and Documentation Support	
12.1 Related Links	27
12.2 Receiving Notification of Documentation Updates	27
12.3 Support Resources	27
12.4 Trademarks	27
12.5 Electrostatic Discharge Caution	
12.6 Glossary	
13 Mechanical, Packaging, and Orderable	
Information	28
	-0

2

Copyright © 2022 Texas Instruments Incorporated

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision U (November 2018) to Revision V (December 2022)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the documen	
•	Added "B" version throughout. Added Device Family Table	1
С	hanges from Revision T (June 2015) to Revision U (November 2018)	Page
•	Changed LM239x temperature range from 125°C to 85°C in <i>Description</i> section	1
٠	Changed data sheet title	1
٠	Changed LM293AD to LM239AD in Device Comparison Table	4
٠	Added Input Current and related footnote in Absolute Maximum Ratings	6
٠	Changed layout of Recommended Operating Conditions temperatures to separate rows	7
٠	Changed values in the Thermal Information table to align with JEDEC standards	8
٠	Added LM2901V and LMV2901AV to LM2901 Elect Char Table title to make more clear which de	evices are
	covered	12
٠	Changed "Dual" to "Quad" and removed "Absolute Maximum" wording and mention of Q100 in C	Dverview
	section text	
٠	Changed and corrected text in Feature Description section	
٠	Changed Example Values in Typical Application Design Parameters table	
٠	Added Receiving Notification of Documentation Updates section	27
c	hanges from Revision S (August 2012) to Revision T (June 2015)	Page
•	Deleted Ordering Information table.	
•	Added Military Disclaimer to <i>Features</i> list	
•	Added Applications, Device Information table, Pin Configuration and Functions section, ESD Rate	
	Thermal Information table, Feature Description section, Device Functional Modes, Application ar	•
	Implementation section, Power Supply Recommendations section, Layout section, Device and	
	Documentation Support section, and Mechanical, Packaging, and Orderable Information section	. No

5 Other Versions

OTHER QUALIFIED VERSIONS OF LM139-SP, LM239A, LM2901, LM2901AV, LM2901V:

- Automotive Q100: LM239A-Q1, LM2901B-Q1, LM2901-Q1, LM2901AV-Q1, LM2901V-Q1
- Enhanced Product: LM239A-EP
- Space: LM139-SP

6 Pin Configuration and Functions

Figure 6-1. D, DB, N, NS, PW, DYY, J Packages 14-Pin SOIC, SSOP, PDIP, SO, TSSOP, SOT-23, CDIP Top View

Figure 6-2. RTE Package 16-Pad WQFN With Exposed Thermal Pad Top View

Table 6-1. Pin Functions

PIN					
NAME ⁽¹⁾	D, DB, N, NS, PW, DYY, J	WQFN	I/O	DESCRIPTION	
OUT1 ⁽¹⁾	1	16	Output	Output pin of the comparator 2	
OUT2 ⁽¹⁾	2	15	Output	Output pin of the comparator 1	
V _{CC}	3	1	_	Positive supply	
IN2- ⁽¹⁾	4	5	Input	Negative input pin of the comparator 1	
IN2+ ⁽¹⁾	5	6	Input	Positive input pin of the comparator 1	
IN1- ⁽¹⁾	6	2	Input	Negative input pin of the comparator 2	
IN1+ ⁽¹⁾	7	4	Input	Positive input pin of the comparator 2	
IN3–	8	7	Input	Negative input pin of the comparator 3	
IN3+	9	8	Input	Positive input pin of the comparator 3	
IN4—	10	9	Input	Negative input pin of the comparator 4	
IN4+	11	11	Input	Positive input pin of the comparator 4	
GND	12	12		Negative supply	
OUT4	13	13	Output	Output pin of the comparator 4	
OUT3	14	14	Output	Output pin of the comparator 3	
NC	_	3	_	No Internal Connection - Leave floating or GND	
NC	_	10	_	No Internal Connection - Leave floating or GND	
Thermal Pad	_	PAD		Connect directly to GND pin	

(1) Some manufacturers transpose the names of channels 1 & 2. Electrically the pinouts are identical, just a difference in the channel naming convention.

Copyright © 2022 Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings for LM339B and LM2901B

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage: $V_S = (V+) - (V-)$	-0.3	38	V
Differential input voltage : V _{ID} ⁽²⁾		±38	V
Input pins (IN+, IN–)	-0.3	38	V
Current into input pins (IN+, IN–)		-50	mA
Output pin (OUT)	-0.3	38	V
Output sink current		25	mA
Output short-circuit duration ⁽³⁾		Unlimited	s
Junction temperature, T _J	TBD	150	°C
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Differential voltages are at IN+ with respect to IN-

(3) Short circuits from outputs to V+ can cause excessive heating and eventual destruction.

7.2 Absolute Maximum Ratings for Non-B Versions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{cc}	Supply voltage ⁽²⁾			36	V
V _{ID}	Differential input voltage ⁽³⁾			±36	V
VI	Input voltage range (either input)		-0.3	36	V
Ι _κ	Input current ⁽⁵⁾			-50	mA
Vo	Output voltage			36	V
I _O	Output current			20	mA
	Duration of output short circuit to ground ⁽⁴⁾		Unlin	nited	
TJ	Operating virtual-junction temperature			150	°C
	Case temperature for 60 s	FK package		260	°C
	Lead temperature 1.6 mm (1/16 in) from case for 60 s	J package		300	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to network ground.

(3) Differential voltages are at xIN+ with respect to xIN-.

(4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

(5) Input current flows through parasitic diode to ground and will turn on parasitic transistors that will increase I_{CC} and may cause output to be incorrect. Normal operation resumes when input is removed.

7.3 ESD Ratings for LM339B and LM2901B

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process

7.4 ESD Ratings, Non-B Versions

				VALUE	UNIT
	/	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	V
ľ	(ESD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Recommended Operating Conditions for LM339B and LM2901B

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Supply voltage: $V_S = (V+) - (V-)$	2	36	V
Ambient temperature, T _A , LM339B	-40	85	°C
Ambient temperature, T _A , LM2901B	-40	125	°C
Input Voltage Range, V _{IVR}	(V–) – 0.1	(V+) – 2.0	V

7.6 Recommended Operating Conditions, Non-B Versions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V	Supply voltage	Non-V devices	2	30	V
V _{cc}	Supply voltage	V devices	2	32	V
		LM139x	-55	125	°C
TJ	lupation tomporature	LM239x	-25	85	
	Junction temperature	LM339x	-0	70	
		LM2901x	-40	125	

7

7.7 Thermal Information for LM339B and LM2901B

			LM339B, LM2901B						
THERMAL METRIC ⁽¹⁾		D (SOIC)	PW (TSSOP)	DDY (SOT-23)	RUC (QFN)	RTE (QFN)	UNIT		
		14 PINS	14 PINS	14 PINS	14 PINS	16 PINS			
R _{0JA}	Junction-to-ambient thermal resistance	111.2	136.6				°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	66.9	66.6				°C/W		
R _{θJB}	Junction-to-board thermal resistance	67.8	79.8				°C/W		
Ψ _{JT}	Junction-to-top characterization parameter	28.0	17.8				°C/W		
Ψјв	Junction-to-board characterization parameter	67.4	79.3				°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	-			°C/W		

(1) For more information about traditional and new thermal metrics, see the Semicondctor and IC Package Thermal Metrics report, SPRA953.

7.8 Thermal Information for Non-B Versions

	THERMAL METRIC ⁽¹⁾		LMx39, LM2901x						
			DB (SSOP)	N (PD I P)	NS (SO)	PW (TSSOP)	J (CDIP)	W (CFP)	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	98.8	111.8	79	96.2	120	89.5	156.2	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	64.3	63.6	73.4	56.1	59	46.1	86.7	°C/W
R _{θJB}	Junction-to-board thermal resistance	59.7	60.5	58.7	56.9	68.8	78.7	154.6	°C/W
TLΨ	Junction-to-top characterization parameter	25.7	26.2	48.3	24.8	9.9	3	56.5	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	59.3	59.8	58.5	56.4	68.2	71.8	133.5	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	_	_	_	24.2	14.3	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.9 Electrical Characteristics for LM339B

 $V_S = 5 V$, $V_{CM} = (V-)$; $T_A = 25^{\circ}C$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V		V _S = 5 to 36V	-3.5	±0.37	3.5	m)/
V _{IO}	Input offset voltage	$V_{\rm S}$ = 5 to 36V, $T_{\rm A}$ = -40°C to +85°C	-5.5		5.5	mV
1	Input biog ourrent			-3	-25	nA
B Input bias current	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			-50	nA	
1	Input offect ourrent		-25	±0.5	25	nA
OS	Input offset current	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	-50		50	nA
V _{CM} Common mode range ⁽¹⁾	V _S = 3 to 36V	(V–)		(V+) – 1.5	V	
V _{CM}	Common mode range (*)	$V_{\rm S}$ = 3 to 36V, $T_{\rm A}$ = -40°C to +85°C	(V–)		(V+) – 2.0	V
A _{VD}	Large signal differential voltage amplification ⁽²⁾	$V_{S} = 15V, V_{O} = 1.4V$ to 11.4V; R _L ≥ 15k to (V+)	50	200		V/mV
		$I_{SINK} \le 4mA, V_{ID} = -1V$		110	400	mV
V _{OL}	Low level output Voltage {swing from (V–)}	$I_{SINK} \le 4mA$, $V_{ID} = -1V$ $T_A = -40^{\circ}C$ to +85°C			550	mV
1		(V+) = V _O = 5 V; V _{ID} = 1V		0.1	50	nA
OH-LKG	High-level output leakage current	(V+) = V _O = 36V; V _{ID} = 1V			100	nA
I _{OL}	Low level output current	V _{OL} = 1.5V; V _{ID} = -1V; V _S = 5V	6	21		mA
1	Quiescent ourrent (all comparators)	V _S = 5 V, no load		0.8	1.2	mA
Q	Quiescent current (all comparators)	V _S = 36 V, no load, T _A = –40°C to +85°C		1	1.6	mA

(1) The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by $V_{CC} - 2V$. However only one input needs to be in the valid common mode range, the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

(2) This parameter is ensured by design and/or characterization and is not tested in production.

7.10 Electrical Characteristics for LM2901B

 $V_{S} = 5 V$, $V_{CM} = (V_{-})$; $T_{A} = 25^{\circ}C$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input offect veltage	V _S = 5 to 36V	-3.5	±0.37	3.5	mV
Vio	Input offset voltage	$V_{\rm S}$ = 5 to 36V, $T_{\rm A}$ = -40°C to +125°C	-5.5		5.5	mv
	Input bice current			-3	-25	nA
В	Input bias current	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			-50	nA
log Input offset current		-25	±0.5	25	nA	
OS	DS Input offset current	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	-50		50	nA
V _{CM} Common mode range ⁽¹⁾	V _S = 3 to 36V	(V–)		(V+) – 1.5	V	
V _{CM}	Common mode range (*)	$V_{\rm S}$ = 3 to 36V, $T_{\rm A}$ = -40°C to +125°C	(V–)		(V+) – 2.0	V
A _{VD}	Large signal differential voltage amplification ⁽²⁾	V_{S} = 15V, V_{O} = 1.4V to 11.4V; R _L ≥ 15k to (V+)	50	200		V/mV
	Low level output Voltage	$I_{SINK} \le 4mA, V_{ID} = -1V$		110	400	mV
V _{OL}	{swing from (V–)}	$I_{SINK} \le 4$ mA, $V_{ID} = -1V$ $T_A = -40^{\circ}$ C to +125°C			550	mV
		(V+) = V _O = 5 V; V _{ID} = 1V		0.1	50	nA
OH-LKG	High-level output leakage current	(V+) = V _O = 36V; V _{ID} = 1V			100	nA
OL	Low level output current	V _{OL} = 1.5V; V _{ID} = -1V; V _S = 5V	6	21		mA
	Quiescent aurrent (all comparatore)	V _S = 5 V, no load		0.8	1.2	mA
Quiescent current (all comparators)		V _S = 36 V, no load, T _A = –40°C to +125°C		1	1.6	mA

(1) The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by $V_{CC} - 2V$. However only one input needs to be in the valid common mode range, the other input can go up the maximum V_{CC} level and the comparator provides a proper output state. Either or both inputs can go to maximum V_{CC} level without damage.

(2) This parameter is ensured by design and/or characterization and is not tested in production.

Copyright © 2022 Texas Instruments Incorporated

7.11 Electrical Characteristics for LM139 and LM139A

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON		T _A ⁽²⁾	LM	139		LM	139A		UNIT
	PARAMETER	TEST CO	NDITIONS	'A \-/	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$V_{\rm CC}$ = 5 V to		25°C		2	5		1	2	
Vio	Input offset voltage	V _{IC} = V _{ICR} m V _O = 1.4 V	/ _{IC} = V _{ICR} min, / _O = 1.4 V				9			4	mV
1	Input offset current	V _O = 1.4 V		25°C		3	25		3	25	nA
IIO	Input onset current	v ₀ - 1.4 v		Full range			100			100	ПА
I _{IB} Input bias current	V _O = 1.4 V		25°C		-25	-100		-25	-100	nA	
I _{IB}	Input bias current	vo - 1.4 v		Full range			-300			-300	ПА
, Common-mode input-					0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			v
V _{ICR}	voltage range ⁽³⁾			Full range	0 to V _{CC} - 2			0 to V _{CC} - 2			v
A _{VD}	Large-signal differential- voltage amplification	$V_{CC+} = \pm 7.5$ $V_{O} = -5$ V to		25°C		200		50	200		V/mV
	High-level output current	V _{ID} = 1 V	V _{OH} = 5 V	25°C		0.1			0.1		nA
ЮН	nigh-level output current	VID - I V	V _{OH} = 30 V	Full range			1			1	μA
V		V _{ID} = -1 V,	I _{OL} = 4 mA	25°C		150	400		150	400	mV
V _{OL}	Low-level output voltage	v _{ID} – – i v,	1 _{0L} – 4 mA	Full range			700			700	IIIV
I _{OL}	Low-level output current	V _{ID} = -1 V,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA
I _{CC}	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2		0.8	2	mA

(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

(2) Full range (MIN to MAX) for LM139 and LM139A is -55°C to +125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

(3) The voltage at either input or common-mode must not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is $V_{CC+} - 1.5$ V; however, one input can exceed V_{CC} , and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to 30 V without damage.

7.12 Electrical Characteristics for LMx39 and LMx39A

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾		TA ⁽²⁾	LM: LM:				39A 39A		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
		$V_{CC} = 5 V \text{ to } 3$		25°C		2	5		1	3	
VIO	V _{IO} Input offset voltage	$V_{IC} = V_{ICR} min$ $V_{O} = 1.4 V$					9			4	mV
	Input offset current	V _O = 1.4 V		25°C		5	50		5	50	nA
I _{IO}	IO Input onset current	V ₀ - 1.4 V	0 - 1.4 V				150			150	
l	IIB Input bias current	V _O = 1.4 V		25°C		-25	-250		-25	-250	nA
I _{IB}	Input bias current	V ₀ = 1.4 V		Full range			-400			-400	
	Common-mode input-			25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			v
V _{ICR}	voltage range ⁽³⁾			Full range	0 to V _{CC} - 2			0 to V _{CC} – 2			v
A _{VD}	Large-signal differential- voltage amplification	$\begin{array}{l} V_{CC} = 15 \text{ V}, \\ V_{O} = 1.4 \text{ V to } 1 \\ R_{L} \geq 15 \text{ k}\Omega \text{ to} \end{array}$		25°C	50	200		50	200		V/mV
	High-level output current	V _{ID} = 1 V	V _{OH} = 5 V	25°C		0.1	50		0.1	50	nA
I _{OH}	nigh-level output current	VID - I V	V _{OH} = 30 V	Full range			1			1	μA
V	Low-level output voltage	V _{ID} = -1 V,	I _{OI} = 4 mA	25°C		150	400		150	400	m\/
V _{OL}		v _D – – i v,	10L - 4 MA	Full range			700			700	- mV
I _{OL}	Low-level output current	V _{ID} = -1 V,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA
I _{cc}	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2		0.8	2	mA

(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

(2) Full range (MIN to MAX) for LM239/LM239A is -25°C to +85°C, and for LM339/LM339A is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

(3) The voltage at either input or common-mode must not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is $V_{CC+} - 1.5$ V; however, one input can exceed V_{CC} , and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to 30 V without damage.

7.13 Electrical Characteristics for LM2901, LM2901V and LM2901AV

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST COND			LM2	2901		UNIT
	PARAMETER	TESTCOND		TA ⁽²⁾	MIN	TYP	MAX	UNIT
			Non-A devices	25°C		2	7	
	Input offset voltage	$V_{IC} = V_{ICR} min,$ $V_{O} = 1.4 V,$	Non-A devices	Full range			15	mV
Vio	input onset voltage	$V_{\rm CC} = 5 \text{V} \text{ to } \text{MAX}^{(3)}$	A-suffix devices	25°C		1	2	mv
				Full range			4	
				25°C		5	50	
IIO	Input offset current	$V_0 = 1.4 V$		Full range			200	nA
	Input biog gurrent			25°C		-25	-250	m A
I _{IB}	Input bias current	$V_0 = 1.4 V$					-500	nA
Common-mode input-				25°C	0 to V _{CC} - 1.5			V
V _{ICR}	voltage range ⁽⁴⁾			Full range	0 to V _{CC} - 2			
A _{VD}	Large-signal differential- voltage amplification	$V_{CC} = 15 \text{ V}, V_{O} = 1.4 \text{ V to}$ $R_{L} \ge 15 \text{ k}\Omega \text{ to } V_{CC}$	9 11.4 V,	25°C	25	100		V/mV
	High-level output current	V _{ID} = 1 V	V _{OH} = 5 V	25°C		0.1	50	nA
он	High-level output current		$V_{OH} = V_{CC} MAX^{(3)}$	Full range			1	μA
			Non-V devices	25°C		150	500	
V _{OL}	Low-level output voltage	$V_{ID} = -1 V,$ $I_{OL} = 4 mA$	V-suffix devices	250		150	400	mV
			All devices	Full range			700	
I _{OL}	Low-level output current	V _{ID} = -1 V,	V _{OL} = 1.5 V	25°C	6	16		mA
1	Supply current	V _O = 2.5 V,	V _{CC} = 5 V	25°C		0.8	2	mA
I _{CC}	(four comparators)	No load	$V_{CC} = MAX^{(3)}$	200		1	2.5	

(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

(2) Full range (MIN to MAX) for LM2901 is -40°C to +125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

(3) V_{CC} MAX = 30 V for non-V devices, and 32 V for V-suffix devices

(4) The voltage at either input or common-mode must not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is $V_{CC+} - 1.5$ V; however, one input can exceed V_{CC} , and the comparator will provide a proper output state as long as the other input remains in the common-mode range. Either or both inputs can go to V_{CC} MAX without damage.

7.14 Switching Characteristics for LM139 and LM139A

 $V_{CC} = 5 V, T_A = 25^{\circ}C$

PARAMETER	PARAMETER TEST CONDITIONS			
Response time	R_L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive	1.3	
Response une	$C_{L} = 15 \text{ pF}^{(1)}(2)$	TTL-level input step	0.3	μs

(1) C_L includes probe and jig capacitance.

(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

7.15 Switching Characteristics for LM339B and LM2901B

 $V_S = 5V$, $V_O PULLUP = 5V$, $V_{CM} = V_S/2$, $C_L = 15pF$, $R_L = 5.1k$ Ohm, $T_A = 25^{\circ}C$ (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	МАХ	UNIT
t _{response}	Propagation delay time, high-to-low; Small scale input signal ⁽¹⁾	Input overdrive = 5mV, Input step = 100mV		1000		ns
t _{response}	Propagation delay time, high-to-low; TTL input signal ⁽¹⁾	TTL input with V _{ref} = 1.4V		300		ns

(1) High-to-low and low-to-high refers to the transition at the input.

7.16 Switching Characteristics for LMx39 and LMx39A

 V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CONDITIONS		LM239 LM239A LM339 LM339A	UNIT
			TYP	
Deenenee time	R_L connected to 5 V through 5.1 kΩ, C_L = 15 pF ^{(1) (2)}	100-mV input step with 5-mV overdrive	1.3	
Response time	$C_{L} = 15 \text{ pF}^{(1)}(2)$	TTL-level input step	0.3	μs

(1) C_L includes probe and jig capacitance.

(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

7.17 Switching Characteristics for LM2901

 $V_{CC} = 5 V, T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS			UNIT
				UNIT
	R_L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive	1.3	110
Response line	$C_{L} = 15 \text{ pF}^{(1)}(2)$	TTL-level input step	0.3 µs	

(1) C_L includes probe and jig capacitance.

(2) The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

 $T_A = 25^{\circ}C$, $V_S = 5$ V, $R_{PULLUP} = 5.1$ k, $C_L = 15$ pF, $V_{CM} = 0$ V, $V_{UNDERDRIVE} = 100$ mV, $V_{OVERDRIVE} = 100$ mV unless otherwise noted.

Copyright © 2022 Texas Instruments Incorporated

7.19 Typical Characteristics, Non-B Versions

Copyright © 2022 Texas Instruments Incorporated

Product Folder Links: LM139 LM239 LM339 LM339B LM139A LM239A LM339A LM2901B LM2901 LM2901AV LM2901V

8 Detailed Description

8.1 Overview

The LMx39 and LM2901x are quad comparators with the ability to operate up to an absolute maximum of 36 V on the supply pin. This standard device has proven ubiquity and versatility across a wide range of applications. This is due to very wide supply voltages range (2 V up to 32 V), low Iq, and fast response of the device.

The open-drain output allows the user to configure the output logic low voltage (V_{OL}) and allows the comparator to be used in AND functionality.

8.2 Functional Block Diagram

Figure 8-1. Schematic (Each Comparator)

8.3 Feature Description

The comparator consists of a PNP Darlington pair input, allowing the device to operate with very high gain and fast response with minimal input bias current. The input Darlington pair creates a limit on the input common-mode voltage capability, allowing the comparator to accurately function from ground to $(V_{CC} - 1.5 \text{ V})$ differential input. Allow for $(V_{CC} - 2 \text{ V})$ at cold temperature.

The output consists of an open-collector NPN (pulldown or low-side) transistor. The output NPN sinks current when the negative input voltage is higher than the positive input voltage and the offset voltage. The VOL is resistive and scales with the output current. See the *Section 7* section for V_{OL} values with respect to the output current.

8.4 Device Functional Modes

8.4.1 Voltage Comparison

The comparator operates solely as a voltage comparator, comparing the differential voltage between the positive and negative pins and outputting a logic low or high impedance (logic high with pullup) based on the input differential polarity.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

Typically, a comparator compares either a single signal to a reference, or to two differnt signals. Many users take advantage of the open-drain output to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes LMx39 or LM2901x optimal for level shifting to a higher or lower voltage.

9.2 Typical Application

Figure 9-1. Single-ended and Differential Comparator Configurations

9.2.1 Design Requirements

For this design example, use the parameters listed in Table 9-1 as the input parameters.

DESIGN PARAMETER	EXAMPLE VALUE				
Input Voltage Range	0 V to Vsup-1.5 V				
Supply Voltage	4.5 V to V _{CC} maximum				
Logic Supply Voltage	0 V to V _{CC} maximum				
Output Current (R _{PULLUP})	1 µA to 4 mA				
Input Overdrive Voltage	100 mV				
Reference Voltage	2.5 V				
Load Capacitance (C _L)	15 pF				

Table 9-1. Design Parameters

9.2.2 Detailed Design Procedure

When using the LMx39 in a general comparator application, determine the following:

- Input voltage range
- Minimum overdrive voltage
- Output and drive current
- Response time

9.2.2.1 Input Voltage Range

When choosing the input voltage range, the input common-mode voltage range (V_{ICR}) must be taken in to account. If temperature operation is above or below 25°C the V_{ICR} can range from 0 V to V_{CC} - 2 V. This limits the input voltage range to as high as V_{CC} - 2 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons.

Copyright © 2022 Texas Instruments Incorporated

The following list describes the outcomes of some input voltage situations.

- When both IN– and IN+ are both within the common-mode range:
 - If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current
 - If IN— is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting
- When IN– is higher than common mode and IN+ is within common mode, the output is low and the output transistor is sinking current
- When IN+ is higher than common mode and IN– is within common mode, the output is high impedance and the output transistor is not conducting
- When IN– and IN+ are both higher than common mode, the output is low and the output transistor is sinking current

9.2.2.2 Minimum Overdrive Voltage

Overdrive voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage (V_{IO}). To make an accurate comparison, the overdrive voltage (V_{OD}) must be higher than the input offset voltage (V_{IO}). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive. Figure 9-2 and Figure 9-3 show positive and negative response times with respect to overdrive voltage.

9.2.2.3 Output and Drive Current

Output current is determined by the load and pullup resistance and logic and pullup voltage. The output current produces a low-level output voltage (V_{OL}) from the comparator, where V_{OL} is proportional to the output current.

The output current can also effect the transient response.

9.2.2.4 Response Time

Response time is a function of input over-drive. See the Section 7.19 graphs for typical response times. The rise and fall times can be determined by the load capacitance (C_L), load/pull-up resistance (R_{PULLUP}) and equivalent collector-emitter resistance (R_{CE}).

- The rise time (τ_R) is approximately $\tau_R \sim R_{PULLUP} \times C_L$
- The fall time (τ_F) is approximately $\tau_F \sim R_{CE} \times C_L$
 - R_{CE} can be determined by taking the slope of Figure 7-35 in its linear region at the desired temperature, or by dividing the V_{OL} by I_{OUT}

9.2.3 Application Curves

Figure 9-2 and Figure 9-3 were generated with scope probe parasitic capacitance of 50 pF.

10 Power Supply Recommendations

For fast response and comparison applications with noisy or AC inputs, use a bypass capacitor on the supply pin to reject any variation on the supply voltage. This variation can affect the common-mode range of the comparator input and create an inaccurate comparison.

11 Layout

11.1 Layout Guidelines

To create an accurate comparator application without hysteresis, maintain a stable power supply with minimized noise and glitches, which can affect the high level input common-mode voltage range. To achieve this accuracy, add a bypass capacitor between the supply voltage and ground. Place a bypass capacitor on the positive power supply and negative supply (if available).

Note

If a negative supply is not being used, do not place a capacitor between the GND pin of the device and system ground.

11.2 Layout Example

Figure 11-1. LMx39 Layout Example